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Abstract: We study Ramsey (second-best) optimal policy in an overlapping generations econ-

omy where pollution increases mortality. Economic activity causes pollution: it has a negative

effect on life expectancy while higher income has a prophylactic effect. These counteracting

effects can make the growth-survival relationship non-concave and cause multiple steady states

and a poverty trap. An increase in exogenous abatement taxes can increase the basin of the

poverty trap. We study dynamically consistent second-best abatement taxes where the planner

takes the optimal savings function of successive generations of agents as given in choosing the

taxes. The optimal tax is a non-homogeneous and increasing function of the contemporaneous

capital stock. The response of the capital stock to the optimal tax can make abatement pol-

icy an independent source of non-monotonicity that leads to non-existence and multiplicity of

steady states and introduces qualitative changes in local dynamics around steady states, such

as oscillations when there were none.
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1 Introduction

Pollution, especially particulate matter (PM) but also nitrogen dioxide, sulphur dioxide,

and ozone, leads to increase of cardiovascular and respiratory diseases and causes prema-

ture mortality.1 This paper studies optimal abatement policy in an overlapping genera-

tions model that incorporates a pollution externality on premature mortality. There is a

three way link between pollution, mortality and economic growth: while economic growth

reduces mortality rates through the effect of higher income and better health outcomes,

it also generates pollution which increases them.2 Changes in mortality in turn affect

savings decisions and thus economic growth and thereby, growth in the rate of pollution

flows.

Recent economic literature has recognized the possibility that multiple steady states,

poverty traps and cycles can arise from the interplay between the three factors and pro-

posed various policy options, via either golden-rule, steady state analysis or Pigouvian

taxes, to offset these outcomes.3 It has, however, not studied Ramsey taxation, where

a planner chooses an optimal sequence of state-contingent policy actions funded by a

sequence of distortionary taxes, taking the optimal choices of private agents as given.

This viewpoint is important as it addresses the issues of dynamic consistency and im-

plementability which are both problematic in overlapping generations. Looking at state

contingent taxes is also important to understand the transition dynamics.

We study a two-period overlapping generations model where the probability of survival

into old age is determined endogenously (Chakraborty [2004], and Bhattacharya and

Qiao [2007]). Production of a single consumption-capital good creates pollution as a by-

1Water pollution, carcinogens of both gaseous and soil contaminant types, heavy metals (such as

mercury), persistent organic pollutants (POPs such as DDT, dioxin), etc. are other types of pollution that

lead to premature mortality. There is robust micro evidence that exposure to particulate matter PM10

and PM2.5, leads to increased cardiovascular disease, chronic obstructive pulmonary disease (COPD)

and, controlling for other factors, an increase in mortality (see Ayres [2006], Huang et al. [2012], Evans

et al. [2013], Miller et al. [2007], Pope et al. [2004], HEI [2010], Viegi et al. [2006]). A 10 μg per

cubic meter increase in PM10 leads to an increase in mortality by 0.51% and if other gases such as ozone,

nitrogen dioxide, sulfur dioxide and carbon monoxide which are correlated with PM10 are taken into

account the distribution of mortality shifts to the right (Samet et al. [2000]). These effects are present

in both developed and developing countries.
2Wang, Zhang, and Bhattarcharya [2015] study a complementary model where pollution affects mor-

bidity but not mortality.
3See Jouvet et al. [2010]; Mariani et al. [2010], Varvarigos [2008], [2014]; Palivos and Varvarigos

[2010] and Raffin and Seegmuller [2014]. Also see Stokey [1998] who studies the first best problem in a

long-lived agent model with environmental externalities but no mortality effects. For earlier studies of

taxes relying on steady state analysis to correct environmental externalities in overlapping generations

models see Bovenberg and Heijdra [1998], John and Pecchenino [1994], and John et al. [1995]
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product. Increased pollution increases the probability of premature death but increased

income has a prophylactic effect on mortality.4 The positive effect of income on mortality

follows the literature which has pointed out that increased income can counteract some

of the adverse effects of pollution via better nutrition and greater access to health care.5

We study the dynamic, competitive equilibria of the economy. The two contrary forces

that affect mortality can result in a non-convexity that gives rise to poverty traps and

differing effects of environmental policy between rich and poor countries. As a benchmark,

we first look at the impact of an exogenous linear income (wage) tax whose proceeds are

used for pollution abatement. Under an exogenous tax, there can be a low capital, poverty

trap, steady state and in which there is lower per capita consumption and life expectancy

and a high capital steady state in which per capita consumption and life expectancy are

both higher. We refer to the high capital steady state as neoclassical because its essential

features are those of the steady state in a neoclassical growth model. The poverty trap

is a source: any path that starts with a lower capital stock converges over time to a

zero-consumption or trivial steady state. Furthermore, increases in the uniform tax can

increase the steady state capital in the neoclassical steady state while simultaneously

widening the basin of attraction of the trivial steady state.6

The main contribution of the paper is in characterising the optimal abatement policy,

financed by distortionary taxes. There is a well-known commitment problem in imposing

taxes on future generations (see Ghiglino and Tvede [2000], and the survey by Erosa and

Gervais [2001]). Thus, we assume that the tax is set in a dynamically consistent fashion,

i.e. as a function of that period’s capital stock. Such a state-dependent policy requires

no pre-commitment.7

We assume that the government imposes a wage tax on the young in each period. This

tax affects the young’s savings behaviour. Private savings determine next period’s capital

stock which imposes contradictory externalities on the next generation: a higher capital

stock means higher incomes which reduce the next generation’s mortality but also means

4Chakraborty [2004] assumes only the second positive effect, i.e. survival depends on the stock of

health which is an exogenous linear function of wage income.
5Preston [1975] was one of the earliest papers to document the positive effect of income on life ex-

pectancy. The recent survey by Cutler et al. [2006] documents this effect across countries and within

countries. In their interpretation, income alone is not sufficient but it is correlated with willingness for

effective public health delivery.
6The former possibility is known: environmental degradation imposes costs that are external to each

decision-maker so any policy that offsets this externality helps reduce these costs and if the balance is

right, actually promotes growth (see Economides and Philippopoulos [2008], John et al. [1995], Mariani

et al. [2010], and Palivos and Varvarigos [2010] or an analysis of such effects in a variety of settings).
7John et al. [1995] highlight the problem of using pre-committed Pigouvian taxes in such an environ-

ment.
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higher emissions which increase it. It is not possible in our model to offset the externality

entirely by means of the wage tax.8 Thus, the government has only a second-best instru-

ment to maximise a weighted sum of life-cycle utilities of all generations, subject to each

generation’s incentive constraints regarding savings behaviour.

We establish the existence of the optimal tax function with the following characteristics.

First, below a threshold level of capital, the optimal tax is zero and there is no pollution

abatement, as at low levels of pollution, the marginal effects of additional pollution are

negligible.9 Second, in the region of positive taxation, the optimal tax is weakly increasing

and concave in the capital stock. Third, the optimal tax at a given capital stock increases

with the size of the inter-generational discount factor of the planner.

We show that the interaction of the optimal tax policy with optimal savings leads to new

dynamic phenomena. First, when the underlying economy with exogenous taxes admits

two steady states, optimal taxes can reverse their stability properties: a poverty trap

can act as a sink while a neoclassical steady state acts as a source. Second, optimal

taxes may introduce endogenous fluctuations in the neighbourhood of either steady state.

Third, optimal taxes may affect the very problem of existence and uniqueness of steady

states. These dynamics arise even when the government places relatively high weight on

the utility of future generations.

With state-contingent taxation, the interaction of optimal taxes with savings decisions

exerts its own dynamic effect. When the tax rate is fixed, a stationary savings function

drives the entire path of capital accumulation. With optimal taxation, a stationary tax

policy function replaces a fixed tax and the private savings functions shifts with each

change in the tax rate. Now the capital stock evolves along a locus of shifting saving

functions. This adds an additional dimension to the local dynamics and this is what leads

to qualitative changes in dynamic behaviour.

The paper also relates to a broader literature that addresses the interaction of eco-

nomic policies and endogenous fluctuations in dynamic general equilibrium (see Woodford

[1994a]). One strand of this literature (see Goenka and Liu [2012] and Grandmont [1985])

shows that state-dependent economic policies can be used to stabilize endogenous eco-

nomic fluctuations. Another strand shows that simple, non-state dependent feedback

8We discuss later why the wage tax is the only reasonable tax instrument in our framework.
9Palivos and Varvarigos [2010] derive a similar result for a policy of maximising survival probability

rather than intergenerational welfare. Note that the latter does not increase unambiguously with survival

probability as the direct positive effect of survival on generational welfare and the indirect positive effect

that arises due to higher incentives to accumulate capital at given interest rates can be offset by the

indirect negative effect that higher survival rates have on the net return to savings. Our welfare criterion

captures all three effects.
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policies can themselves be a source of endogenous economic fluctuations (see Goenka

[1994a], Goenka [1994b], Grandmont [1986], Smith [1994], Woodford [1994b]), while state-

dependent feedback policies may eliminate these. In this paper we present a different type

of difficulty: when the private response to optimal policy shows potential non-convexities

and the policy-maker is restricted to second-best instruments, state-dependent policies

can generate non-linear dynamics in the evolution of state variables.

The plan of the paper is as follows. In section 2, the benchmark model is developed.

Section 3 studies the effects of exogenous (constant) taxes, and section 4 studies the

second-best optimal tax. In this section we first characterize properties of the optimal tax

function, and then study the dynamics of the equilibrium trajectories. The final section

concludes.

2 Model

Time is discrete and denoted by t = 0, 1, . . .. Each period a new generation is born,

indexed by its period of birth. A generation consists of a continuum of agents normalized

to measure one. Agents born in period t live at most until the end of period t+1. There

is uncertainty as to whether an individual will survive till old age. The probability that

an agent born in period t lives until the end of period t + 1 is denoted by πt, while with

probability 1− πt the agent dies at the end of period t.

Each agent supplies one unit of labour inelastically when young and receives a wage wt

which is used to finance current consumption, cyt and savings for old age, st. Old agents

have no labour endowment and live entirely off the proceeds of their savings. Following

the literature on uncertain lifetimes, we assume that there is a perfect annuity market in

which young agents buy annuities from perfectly competitive intermediaries who lend out

the proceeds to firms for investment in productive capital. Each unit of time t investment

results in one unit of time t + 1 capital, kt+1 which becomes immediately available for

production and fully depreciates in that period. Thus,

kt+1 = st (1)

At time t = 0, k0 is exogenously given.
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2.1 Production and factor prices

The production function is Cobb-Douglas and displays constant returns to scale. It can

be expressed in intensive form:

yt = Akα
t ;

where y is output per worker and k is capital per worker.

The gross returns to capital and labour rt and wt respectively, are equal to their marginal

products:

wt = (1− α)Akα
t ; (2)

rt =
αA

k1−α
t

. (3)

As a positive fraction of savers do not live into old age, the return on period t savings for

those who survive is rt+1/πt.

2.2 Pollution emission and abatement

The production of final output creates a proportionate flow of pollutants zt = γyt. Note

that the relevant measure of pollution is proportional to the gross, not the per-capita,

rate of output. However, because population is normalised to unity, per-capita and gross

quantities are numerically identical so for notational consistency we use use lower case

z to denote pollution flows and relate it to y. For indeterminate population sizes, the

constant γ could be interpreted as the product of a technological rate of emissions and

a scale multiplier which converts per-capita output into gross output . Furthermore, the

type of pollution we are modelling here consists of PM10 and similar particulate matter

and pollutants such as NOx which have been linked to to health effects. The evidence

shows that such pollutants are short-lived, except in certain areas characterised by their

geography and the nature of economic activity, so that they can be treated as a flow

(Varotsos et al. [2005], Windsor and Toumi [2001], Zeka et al. [2005]). This is different

from the issue of greenhouse gas build-up that arises in the global warming literature.10

Environmental policy is implemented by a planner that imposes an environmental tax,

τt on the wage incomes of the contemporaneous young.11 The proceeds are spent on

10In earlier versions of the paper, Goenka et. al. [2012]) we show that allowing for persistence of

pollution does not affect results under some conditions.
11The reason for restricting the incidence of environmental taxes to the young generation is explained

in the section where the optimal tax policy is derived.
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operating a clean-up technology that reduces the flow of pollutants. We assume that this

technology can only be operated by a central authority so that individual agents do not

have the means to abate privately.12

The efficiency of this technology is denoted by χ > 0, and the reduction in pollution

flows, is assumed to be a linear function of tax-financed expenditures. Thus the net flow

of pollutants is:

zt = γyt − χτtwt;

which, after substituting for wt and redefining terms, simplifies to

zt = γ(1− ψτt)Ak
α
t . (4)

where ψ = χ(1 − α)/γ. We assume ψ ∈ [0, 1] to avoid the possibility that as a result of

abatement, the flow of pollution is negative.13

2.3 Probability of survival and the rationale for environmental

policy

We assume that the probability of survival into old age is identical for all agents and

is represented by a twice continuously differentiable function of yt and zt. Longevity is

increasing in per-capita income and decreasing in pollution. If per-capita income is zero,

the survival probability is at some minimal level regardless of the stock of pollution and

as the stock of pollution approaches infinity, survival probability tends to zero regardless

of the level of income.

Assumption 1

πt = π(kt) = π(y(kt), z(kt)); (5)

π ∈ [0, 1], ∀y ≥ 0 & ∀z ≥ 0; (6)

∂π

∂y
≡ πy(y, z) ≥ 0, ∀y ≥ 0; (7)

∂π

∂z
≡ πz(y, z) ≤ 0, ∀z ≥ 0; (8)

π(0, z) = π ∈ [0, 1], ∀z ≥ 0; (9)

π(y,∞) = 0, ∀y ≥ 0. (10)
12Some papers have considered private abatement in contexts in which the benefits of pollution abate-

ment are unambiguously positive, see John and Pecchenino [1994], John et. al. [1995], and Mariani et.

al. [2010]. In our model this is not the case, see Sections 4.1 and 4.2.
13We can dispense with this assumption but an interior steady state may not exist. In addition we

have to assume that ψ is small enough to ensure that second order conditions for the optimal tax policy

function to hold, see Lemma 2.
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The only consequence of pollution in this model is that it creates a negative external effect

on expected lifetimes.14 Given the overlapping generations framework this externality

affects the young generation alone by affecting their expected lifetime utility. As only the

young work, the output is not affected by pollution directly. Thus, there is a potential

for welfare improvement by means of a tax on the young, the proceeds of which are spent

on abating pollution. Future generations are affected indirectly through the effects of

pollution on savings of the current generation, i.e. the next period’s capital stock.

2.4 Preferences

In order to derive closed form solutions we assume that each agent born at time t has a

time-separable expected utility function, U over consumption when young cy and when

old co:15

U t = lncyt + πtlnc
o
t+1;

which the agent maximises subject to the life-cycle budget constraints:

cyt ≤ (1− τt)wt − st; (11)

cot+1 ≤ rt+1

πt

st; (12)

where st is the young agent’s savings and cot+1 is ex post consumption for an agent who

survives into old-age.

Taking the first-order condition with respect to savings,

− 1

cyt
+

πt

cot+1

rt+1

πt

= 0;

and combining with equations (11), (12) and (3), results in the following equation:

st =
πt

1 + πt

A · (1− τt)(1− α)kα
t .

2.5 Equilibrium

Using the market clearing condition, i.e. substituting into equation (1) we have:

kt+1 =
πt

1 + πt

A · (1− τt)(1− α)kα
t . (13)

The path of the capital stock is traced out by recursive application of equation (13) from a

given k0 while the accompanying evolution of the flow of pollution follows from recursively

applying equation (4). The other variables are updated similarly.

14Wang, Zhang, and Bhattacharya (2015) study a complementary model where pollution affects mor-

bidity and not mortality and focus on issues of insurance.
15The qualitative results hold under more general utility functions.
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3 Exogenous Taxes

To understand the benchmark case, we first consider the case of exogenous taxes, τ . We

examine the dynamics in the model and the effects of varying the tax rate which helps in

the characterization of the optimal policy.

3.1 Dynamics

A steady state is described by the following equations:

π = π(k) = π(y(k), z(k)); (14)

k =
π(k)

1 + π(k)
A · (1− τ)(1− α)kα; (15)

z = γ(1− ψτ)Akα; (16)

y = Akα; (17)

where π, k, z and y denote steady state values of the respective variables.

Equation (15) can be written as

k = G(k);

where

G(k) =
π(k)

1 + π(k)
Γkα;

and Γ = A · (1− τ)(1− α) is a constant.

Under (9), at k = 0,

G(0) =
π

1 + π
Γ(0)α = 0;

implying that a trivial steady state exists at k = 0.

If π, the survival probability was constant, then G(k) would represent a standard concave

neoclassical growth mapping, with G′(0) = ∞, G′′(k) < 0 ∀k, so that a unique interior

steady state exists and the dynamics would be globally stable.

However, with endogenous survival probability, other possibilities exist.

Lemma 1 limk→0 π
′(k) < ∞ is a sufficient condition for G′(0) = 0.

Proof : Note that π is continuous and differentiable in its arguments which in turn are

continuous and differentiable in k. Therefore, π is continuous and differentiable in k and
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G(k) is continuous and differentiable in k. Taking derivatives of both terms in G(k) and

rearranging:

G′(k) =
[

Γkα

1 + π(k)

] [
α
π(k)

k
+

π′(k)
1 + π(k)

]
; (18)

it can be seen that the shape of G(k) can be quite different from the standard neoclassical

mapping, depending on how π′(k) varies with k. Taking the limits of the two terms inside

square brackets as k → 0, the first term clearly goes to zero and the limit of the second

term inside square brackets can be expressed as

α ·
{
lim
k→0

π(k)

k

}
+

{
lim
k→0

π′(k)
1 + π(k)

}
;

where the limit of the first term inside curly brackets is given by L’Hopital’s Rule as:

lim
k→0

π(k)

k
= lim

k→0
π′(k).

It can be seen that limk→0 π
′(k) < ∞ is a sufficient condition for both the terms inside

curly brackets to remain finite so that limit of G′(k) approaches zero as k → 0.

Lemma 1 rules out an Inada condition in the reduced-form relationship between survival

probability and its determinants. In its absence, it is possible that G′(0) > 1 and a unique

steady state with globally stable dynamics would result, as in a standard neoclassical

growth model. While Lemma 1 implies that for low values of k: k > G(k), the reverse is

true for sufficiently large values of k. If we let k̃ = (0.5Γ)
1

1−α for given Γ, α; then ∀k ≥ k̃,

G(k) ≤ k. To see this, suppose k ≥ k̃ and that, contrary to the claim, G(k) > k. Since

π ≤ 1 by definition, then π/(1 + π) ≤ 0.5 and G(k) ≤ 0.5Γkα. By transitivity it must be

the case that 0.5Γkα > k. But then 0.5Γ > k1−α and (0.5Γ)
1

1−α ≡ k̃ > k, leading to a

contradiction.

So far we have established that either (i) there is no interior steady state or (ii) there are

multiple interior steady states. To ensure (ii), note that the steady state equation can be

rearranged as follows:

Γ =
1 + π(k)

π(k)
k1−α.

Given the function π(k) and any finite and positive value of k, the right-hand side will be

positive and finite. Since Γ is exogenous and positively related to A for τ < 1 and α < 1,

there always exists A large enough that

Γ >
1 + π(k)

π(k)
k1−α.

This leads to the following result, stated without proof:
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Figure 1: Multiple steady states

Lemma 2 For any α ∈ (0, 1) and τ ∈ (0, 1) there exists an Â < ∞ and a k̂ < ∞ and

asssociated Γ̂: Γ̂ = ((1 + π(k̂))/(π(k̂))k̂1−α, such that Γ > Γ̂, G(Γ, k̂) > k̂.

Lemma 1 implies that so long if total factor productivity (TFP) is high enough (given a

function π(k)), G(k) will exceed k for a non-empty interval of values of k. Along with the

results on the slope and level of G(k) derived earlier, this leads to the following proposition

Proposition 1 If TFP, A is large enough, and Assumption 2 holds, then there are two

interior steady states, k∗
� and k∗

h, such that k∗
� < k̂ < k∗

h.

The higher steady state, k∗
h has more capital and therefore more consumption as well as

a higher stock of pollution. Despite this, it offers a greater survival probability. In the

steady state, the survival probability is

π(k) =
k1−α

Γ− k1−α
;

which is increasing in k.

Figure 1 below represents the transition map, depicting kt+1 as an S-shaped function of

kt for a given tax rate, τ .

The 45o line represents potential steady states. G(k) is S-shaped upwards, sharing its

origin with the 45o line and intersecting it at two other points k∗
� , k

∗
h. Since, for points
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which lie between the origin and k∗
� , G(k) lies below the 45o line, any path starting off

with k0 ∈ (0, k∗
� ) will converge to the trivial steady state, while for points between k∗

� and

k∗
h, G(k) lies above the 45o line, any path starting off at k0 > k∗

� will converge to k∗
h.

k∗
� represents a poverty trap not just in the sense that it is the steady state with lower

levels of economic activity and pollution flows, but also in the sense that it represents

a threshold below which the equilibrium path of the economy converges asymptotically

towards zero. We shall therefore refer to this type of steady state as a ‘poverty trap’.

k∗
h represents a stable steady state, which resembles locally the unique steady state of a

neoclassical growth model. We shall refer to this type of steady state as a ‘neoclassical

steady state’ even when it is paired with a poverty trap.

The concavity of G(k) can lead to it sloping downward at some point. A necessary con-

dition is π′(k) < 0, which can happen at high enough values of k. This can lead to

oscillations and limit cycles in the stock of capital and the flow of pollution around the

upper steady state.16 In the subsequent sections we assume that this condition does not

hold to highlight the role of optimal taxes on dynamics.

3.2 Varying τ

To understand the dynamic effect of abatement policy on growth, we differentiate the

steady state transition mapping, G(k), with respect to τ :

∂G(k)

∂τ

∣∣∣∣
k

=

[
− π

1 + π
− πzγψ(1− τ)Akα

(1 + π)2

]
(1− α)Akα; (19)

where πz is the partial of π with respect to z alone (the effect of k on z is accounted for by

the rest of the numerator in the second term). The above derivative is ambiguous in sign

because πz < 0. An increase in τ lowers net wage incomes, which at constant π shifts G(k)

downwards. On the other hand, a higher τ raises π via the abatement effect on z. This

tends to work against the downward shift in G(k). But the latter effect is weighted by kα

and is likely to be dominated by the direct effect of τ on wage income at low values of k.

Thus G(k) is likely to shift down at low levels of k but it might shift up at higher levels.

We next give an example of survival probability function to generate these comparative

static effects.

In Appendix A2, we consider variants of the following functional form

π =
π + yϑ

1 + yϑ
1

1 + zδ
;

16Note that G(k) cannot slope downwards at the low steady state, even if π′(k) < 0.
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Figure 2: A uniform increase in the tax rate.

and discuss conditions under which they would lead to Assumption 2 being satisfied and

for multiple steady states to arise. We then use the following parameter values

α = 1/3, A = 2.4, γ = 1.11, π = 0.0, ϑ = 9, δ = 5, ψ = 0.8;

and using MATLAB trace out the transition map of the capital stock for τ = 0 and

τ = 0.55. The results are depicted in Figure 2.

The original steady states, at τ = 0, are k� = 0.035 and kh = 0.114 respectively. An

increase in the abatement tax to τ = 0.55 causes a downward shift in G(k) at low levels

of capital stock but upwards at the high capital stock. There are two new steady states,

k∗′
� = 0.050 and k∗′

h = 0.158 respectively. Compared with their respective predecessors,

both steady states have higher levels of capital stock. The dynamic implication is that the

basin of attraction of a trivial steady state has now increased, while economies that start

off to the right of k∗′
� can now converge to a higher steady state than before. Thus, with

an increase in the exogenous tax, it is possible that long-run cross-country inequality will

increase.

4 Optimal taxes

We examine the social planner’s problem of choosing a sequence of optimal abatement

taxes to maximise the weighted sum of lifetime utilities of each generation born at time
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t + i, i ≥ 0, with 0 ≤ β < 1 representing the inter-generational discount factor. The

welfare function is

Wt = πt−1c
o
t +

∞∑
i=0

βiUt+i;

where

Ut+i = lncyt+i + πtlnc
o
t+i+1; i ≥ 0.

The planner imposes a sequence of wage taxes {τt+iwt+i}∞i=0 to maximise the above.

A wage tax is the natural policy instrument in the model. Ours is a one-sector model with

only one choice variable for private agents, namely savings for old age. The only possible

instruments are taxes on output, capital and wages.17 An output tax, because of constant

returns to scale, amounts to a uniform tax on wage and capital incomes. Taxing capital

incomes is problematic as it makes the old in the initial period worse off. Hence, only

wage taxes have the potential to be weakly welfare-increasing, albeit in a second-best way

because of their effects on savings. Likewise, the planner is constrained to non-negative

tax rates as any subsidy to the current young can only come at the expense of the current

old.

Since the planner’s policies are, by construction, welfare-neutral with respect to the sur-

viving old at time t, we confine our attention to a truncated welfare function W̃t that

excludes time t old. It is well known that in the absence of viable commitment strategies,

the path of optimal taxes in an overlapping-generations economy may be time-inconsistent

(Erosa and Gervais [2001]). To avoid this, we use dynamic programming to formulate each

period’s policy choice as a function of the state of the economy.

W̃t = V (kt) = maxτt [Ut + βV (kt+1)] .

Plugging in private decisions regarding cyt , c
o
t+1 and kt+1 from equations (11), (12) and

(13) respectively into the objective function, we have

V (kt) = maxτt

[
ln

(
(1− τt)(1− α)Akαt

1 + π(kt)

)
+ π(kt)ln

(
Â(1− τt)

αk2αt
π(kt)1−α(1 + π(kt))α

)
+ βV (kt+1)

]
;

17We do not have a ‘dirty’ sector which could be taxed to fund transfers to a ‘green’ sector; neither do

our agents have access to technologies that might offset pollution. So the type of Pigouvian taxes that

can tilt incentives towards green activities are not available in our model. Some of the related papers

in the literature, e.g. John and Pecchenino [1994], Mariani et. al. [2010] consider private abatement

activity. This is not applicable in our model since the pollution externality arising from agents’ savings

decisions is passed on to agents not alive at the time the decisions are made. It should also be noted

that in their papers, it is always welfare-improving to tax polluting activities and encourage abatement

but in our model, reducing pollution may not improve welfare, given the dual external determinants of

mortality.
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where Â ≡ α(1− α)αA1+α is a constant

Taking the first-order condition:

∂Vt

∂τt
= Ωt

∂πt
∂τt

− 1 + απt
1− τt

+ β
∂Vt+1

∂kt+1

∂kt+1

∂τt
≤ 0; (20)

where

Ωt = lncot+1 −
2− α + πt

1 + πt

;

and < 0 implies a zero tax.

Next, taking the derivative ∂Vt/∂kt of the value function at time t and updating it by one

period, we get
∂Vt+1

∂kt+1
=

α(1 + 2πt+1)

kt+1
+Ωt+1

∂πt+1

∂kt+1
.

Finally taking into account the dependence of kt+1 on τt via equation (13),

∂kt+1

∂τt
=

A(1− α)kαt
1 + πt

[(
1− τt
1 + πt

)
∂πt
∂τt

− πt

]
.

Putting everything together we can express the first-order condition as

∂Vt

∂τt
= Ωt

∂πt
∂τt

− 1 + απt
1− τt

+β

[
α(1 + 2πt+1)

kt+1
+Ωt+1

∂πt+1

∂kt+1

] [
A(1− α)kαt

1 + πt

{(
1− τt
1 + πt

)
∂πt
∂τt

− πt

}]
.

(21)

The terms in equation (21) represent the following effects: (i) the direct effects of a

tax on the wage income of the current young, (ii) the indirect effects working through

induced changes in survival probability and (iii) the intergenerational spillover induced

by the effect of current taxes on the capital stock available to the next generation’s young

workers. The direct effects reduce both consumption and savings by the young, and are

negative. These are captured by the second term in the optimality condition.

The indirect effects are captured in the term inside square brackets. An environmental

tax raises survival probability, leading to higher expected utility in old age. At the same

time the higher survival probability reduces actual consumption at both young and old

age, the first because savings are increasing in survival probability; the second because

although individuals save more the return to their annuities yields less because of the

higher survival ratio of the population. This effect can be confirmed from equation (21)

in which the term capturing the optimal old-age consumption is decreasing in π. The

intuition is that while per-capita old-age capital increases by a factor of [π/(1 + π)]α, the

market return on a unit annuity decreases by a factor 1/π.

Finally, the intergenerational effect depends on a combination of three factors: the effect

of a current abatement tax on capital stock in the next period; the effect of a higher

capital stock next period on the lifetime utility of the next generation and the magnitude
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of the intergenerational discount factor. The first two of these effects are both ambiguous,

consisting themselves of further sub-effects, but whatever their sign, their magnitude is

proportional to the intergenerational discount factor β.

Before proceeding to further disentangle these effects we shall first consider the case of

β = 0: this is the case of a myopic government concerned only with the welfare of a single

contemporaneous generation. This is a benchmark case which yields tractable results that

are extended to the general case.

4.1 The myopic social planner:

When β = 0, first-order condition (20) reduces to

dVt

dτt
≡ H =

[
lncot+1 −

2− α + πt

1 + πt

]
· ∂πt

∂τt
− 1 + απt

1− τt
≤ 0; (22)

where < 0 implies τt = 0.

With some further manipulations to be described below, the above condition will underly

a policy function, τt = h(kt). Substituting the solution into equation (13) for capital

accumulation yields kt+1 = G(kt, h(kt)). The dynamic path of the economy is traced out

by repeated iteration of the above. A steady state of the economy with optimal taxes is

given by a pair k and τ = h(k) such that k = G(k, h(k)).

Proposition 2 If k0 is below some threshold level k, then the optimal environmental tax,

τ ∗ = 0.

Proof : From (22) we see that a necessary condition for τ ∗ > 0 is

Ωt =

[
lncot+1 −

2− α + πt

1 + πt

]
> 0.

At low levels of initial capital, k0, this is not going to hold. This is because the negative

term in Ωt is always non-zero while the positive term approaches minus infinity, given the

logarithmic specification, as the capital stock approaches zero. Thus there exists some

threshold level k; such that for any k0 < k, Ω < 0.

To see the potential for a positive tax at higher levels of capital, consider how Ω behaves

as capital rises, abstracting for now from the equilibrium path. In principle, there will

always be an arbitrarily high level of kt such that Ωt > 0. This is because the first term in

Ωt has the potential to increase monotonically with kt, at least after some threshold, while
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the second term is always bounded in the interval [(3−α)/2, (2+π−α)/(1+π)] and within

this interval, it falls with increases in πt. cot+1 rises monotonically with kt even when πt

rises as well. If along the dynamic path, the detrimental effects of pollution make πt start

declining in kt, then cot+1 rises even faster with kt. At some level of development, Ωt will

be positive and increasing in capital. The other negative term in the first-order condition

is similarly bounded above at (1 + α), when evaluated at a zero tax rate. Thus, at a

second critical level of development, an interior solution will arise for a positive optimal

tax. The question is what level of development has to be reached before it arises and to

what extent this level coincides with potential steady states of the economy.

To pursue these conjectures more rigorously, we first establish some general conditions for

the applicability of a positive environmental tax at some threshold level of income. Let

the right-hand side of equation (22) be denoted by:

H(kt, τt) = Ωt · ∂πt

∂τt
− 1 + απt

1− τt
.

The first condition needed for a well-behaved tax function is

∂H

∂τt

∣∣∣∣
H=0

< 0.

In other words, that the second-order condition is satisfied whenever the first-order con-

dition holds as an equality.

The second condition ensuring a well behaved tax function is:

∂H

∂kt

∣∣∣∣
τ=0,H=0

> 0.

Thus, evaluated at the point where the first-order condition first holds with equality at

a zero tax, it is upward sloping in kt. Note that at very low levels of the capital stock

this may not be true, but what is required is that it holds in the neighbourhood of the

threshold where an optimal tax first arises.

To explore the above conditions further, differentiate H with respect to its arguments (time

scripts will be suppressed as all variables are contemporaneous. After some manipulation,

these derivatives can be written as

∂H

∂τ
= Ω

∂2π

∂τ 2
− 2α

1− τ

∂π

∂τ
− 1 + απ

(1− τ)2
− π(1 + π) + (1− α)

π(1 + π)2

(
∂π

∂τ

)2

; (23)

∂H

∂k
=

∂Ω

∂k

∂π

∂τ
+ Ω

∂2π

∂τ∂k
− α

1− τ

∂π

∂k
; (24)

where
∂Ω

∂k
=

2α

k
− (1 + π)2 − π − α

(1 + π)2
νπk;

17



where νπk is the elasticity of survival probability with respect to capital. This is eventually

decreasing in k due to the positive and eventually diminishing effects of greater income

and the negative and eventually increasing effects of higher pollution. It can turn negative

at some point; however, we shall restrict our analysis to cases where it remains strictly

positive.

None of the above terms can be signed unambiguously but two comments are in order.

First, as noted before, a positive effect of k on Ω is necessary for the first-order condition

to eventually hold. What this in turn requires is that along the infra-marginal path of

capital, i.e. before the first-order condition kicks in, there is some range of values of

k where the elasticity of survival probability with respect to the capital stock (taking

into account both the beneficial and detrimental effects) is sufficiently small. As noted

above, this elasticity will eventually diminish with growth in the capital stock, implying

the existence of a threshold value of capital after which ∂Ω/∂k > 0.

Proposition 3 There exists k̃ > 0, such that for all k > k̃,
∂Ω

∂k
> 0.

From hereon we neglect consideration of values of k below this threshold, as for the

purposes of deriving an environmental tax, such values of k cannot admit positive solutions

of τ . Second, a sufficient condition for the second-order condition for τ to be negative is

that π is concave in τ . However, this is likely to be too restrictive, given the following

relationship between the second-order derivatives of π with respect to τ and z:

∂2π

∂τ 2
= (ψγAkα)2

∂2π

∂z2
.

Thus, π will be concave in τ if and only if it is downwards concave in z. But given the likely

impact of pollution levels on survival probability, this portion of the π − z relationship

applies at lower levels of pollution, when it is less likely that the first-order condition for

an optimal tax will hold as an equality. At higher levels, it is unlikely that π is concave

in τ . This rules out imposing concavity on the π− τ relationship as a sufficient condition

for ensuring the validity of the second-order condition.

To proceed further, we turn to the specific example of the survival probability assumed

earlier.

π = πAπB =

[
π + yϑ

1 + yϑ

] [
1

1 + zδ

]

In the following subsections we first analyse the sign of ∂2π/∂τ 2 and then the sign of

∂2π/(∂τ∂k)
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4.1.1 The second-order condition, ∂H/∂τ

The following expressions are derived for the specific functional form for π (time scripts

are again suppressed).

∂π

∂τ
= πAψδγAk

αzδ−1

(1 + zδ)2
> 0; (25)

∂2π

∂τ 2
= πA (ψγAk

α)2δzδ−2

(1 + zδ)3
[
(δ + 1)zδ − (δ − 1)

]
.

By comparing the two expressions, the latter can be written as

∂2π

∂τ 2
= πA

(
ψγAkαδ

z(1 + zδ)
· ∂π
∂τ

)[
(δ + 1)zδ − (δ − 1)

]
⎧⎪⎨
⎪⎩

>

=

<

⎫⎪⎬
⎪⎭ 0 as zδ

⎧⎪⎨
⎪⎩

>

=

<

⎫⎪⎬
⎪⎭

δ − 1

δ + 1
; (26)

confirming the dependence of the sign of ∂2π/∂τ 2 on that of ∂2π/∂z2. To proceed further

with an analysis of the second-order condition, i.e. equation (23), note from equation (4)

that:

γAkα
t =

zt
1− ψτt

.

Suppressing time subscripts, let us write this as

γAkα =
z

1− ψτ
.

Then (26) can be further modified:

∂2π

∂τ 2
= πA

(
ψδz

z(1− ψτ)(1 + zδ)
· ∂π
∂τ

)[
(δ + 1)zδ − (δ − 1)

]
Now, from equation (22),

Ω ≤ 1 + απ

1− τ

1

∂π/∂τ
, ∀ τ

Thus, taking the term involving ∂2π/∂τ 2 in equation (23),

Ω
∂2π

∂τ 2
≤
(
1 + απ

1− τ

ψδz

z(1− ψτ)(1 + zδ)

)[
(δ + 1)zδ − (δ − 1)

]
Combining with one of the other terms in equation (23)

Ω
∂2π

∂τ 2
− 1 + απ

(1− τ)2
≤
[
1 + απ

1− τ

] [
ψδz − [(δ + 1)zδ − (δ − 1)

]
z(1− ψτ)(1 + zδ)

− 1

1− τ

]
(27)
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The sign of the above term will depend on the sign of the term inside square brackets.

After some manipulation, the sign of the latter can be shown to be negative if the following

holds:

− [1− ψ{1 + δ(1− τ)}]zδ
(1− ψτ)(1 + zδ)(1− τ)

< 0

A sufficient condition for the above term to be negative for all values of endogenous

variables is ψ < 1/(1 + δ).18

We have therefore established:

Lemma 3 A sufficient condition for ∂H/∂τ to be negative at all values of endogenous

variables and along the entire dynamic path is ψ/(1 + δ) < 1.

Recall that ψ =
χ(1− α)

γ
, where χ is the effectiveness of the abatement technology γ is

how polluting is the productive activity. As we would expect, if the first is low enough

and/or the second high enough, then the second order condition holds, or in other words

there is an interior solution.

4.1.2 The sign of ∂H/∂k

Note the following derivatives for the assumed functional form (time indices continue to

be suppressed):

∂πA

∂k
=

α

k

ϑ(1− π)yϑ

(1 + yϑ)2
;

∂πB

∂k
= −αγ(1− ψτ)Akα

k

δzδ−1

(1 + zδ)2
.

Using the definitions of πA, πB, and π, and rearranging, we can combine the above

derivatives
∂π

∂k
=

απ

k

[
ϑ(1− π)yϑ

(1 + yϑ)(π + yϑ)
− δzδ

(1 + zδ)

]
; (28)

which implies that

νπk = α

[
ϑ(1− π)yϑ

(1 + yϑ)(π + yϑ)
− δzδ

(1 + zδ)

]
18By extending the comparison with the sign of Ω·∂2π/∂τ2 to other terms in the expression for ∂2H/∂τ2

even weaker conditions can be derived. But as with the above, to ensure negativity of the second-order

condition for all admissible values of endogenous variables, the above condition still applies.
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where νπk has been defined as the elasticity of π with respect to k.19

Now, to derive the sign of ∂2H/(∂τ∂k), we proceed in two steps. We first derive an

expression for ∂2π/(∂τ∂k) and then use it to evaluate the sign of ∂2H/(∂τ∂k).

The first step is accomplished by taking the total derivative of ∂π/∂τ , equation (25), with

respect to k. After imposing some definitions and equalities, and rearranging terms, it

can be shown that:
k

∂π/∂τ

∂2π

∂τ∂k
= νπk + αδ

z

z(1 + zδ)
> 0.

The full derivation is outlined in Appendix A1. From here it is easy to establish the

following:

Lemma 4 H(k, τ) = 0 =⇒ ∂H/∂k ≥ 0.

Proof : First, the expression for ∂2π/∂τ∂k implies that

∂2π

∂τ∂k
≥ ∂π

∂τ

1

k
νπk.

Second, H = 0 implies that

Ω =
1 + απ

1− τ

1

∂π/∂τ
.

Therefore, referring to equation (24),

Ω
∂2π

∂τ∂k
=

1 + απ

1− τ

1

∂π/∂τ

∂2π

∂τ∂k
≥ 1 + απ

1− τ

1

k
νπk.

Now, referring to the negative term in equation (24),

α

(1− τ)

∂π

∂k
=

απ

(1− τ)k
ντk.

Combining the two terms in equation (24),

Ω
∂2π

∂τ∂k
− απ

(1− τ)k
νπk ≥ 1 + απ

1− τ

1

k
νπk − απ

(1− τ)k
νπk ≥ 1

(1− τ)k
νπk ≥ 0

.

Note that we have derived the above result for all values of τ . Thus, as an economy’s

capital stock increases, the slack in H diminishes until finally an interior solution is reached.

19Throughout the analysis, we assume that νπk remains positive, although as we have noted before,

a negative value is entirely possible under some conditions, and if it happens there can be oscillations

around the high steady state.
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4.1.3 Positive taxes:

We can now establish:

Proposition 4 If
ψ

1 + δ
< 1 and k ≥ k̃ then, there (i) exists an optimal policy function,

τ = h(k), h : [k̃,∞) −→ [0, 1]; (ii) h(k) is (weakly) increasing in k.

Proof : The first part follows from the strict monotonicity of H in both τ and k. Since

H is strictly decreasing in τ for all k under the assumed conditions, then for any k in the

relevant interval, either (i) H(0, k) ≤ 0, or (ii) H(1, k) > 0 or (iii) H(τ, k) = 0 for some

τ ∈ [0, 1]. Moreover, τ uniquely solves the relevant case for H at given k, because for any

τ ′ > τ , in case (i) τ = 0 and τ ′ > 0 worsens the slack in H; in case (ii) if τ = 1 then τ ′ lies
outside the unit interval and in case (iii) since H(τ, k) = 0 for τ ∈ [0, 1], then H(τ ′, k) < 0.

Similar argument rules out the possibility that τ ′ < τ also solves H for a given k.

The second part follows from

∂h(k)

∂k

∣∣∣∣
H=0

= −Hk

Hτ
≥ 0;

while ∀k ∈ [k̃,∞), H(0, k) < 0 ⇒ h(k) = 0 and H(1, k) > 0 ⇒ h(k) = 1.

Note that H(k, 1) < 0; ∀k since the negative term in H approaches −∞ as τ approaches

1 at all values of k, so Proposition 4 implies that h(k) approaches 1 only asymptotically.

However, as we established in Proposition 2, at low values of k, the tax policy function

has a flat portion. Proposition 4 thus implies a tax function which is non-homogenous

in the capital stock, increasing at intermediate values of capital and approaching τ = 1

in the limit. This is in line with conventional wisdom which suggests that the level and

intensity of abatement should increase with the state of development.

4.2 Long-lived social planner:

We look at the continuation utility of future generations in the first-order condition (20)

for determining the optimal tax on the current generation:

β

[
α(1 + 2πt+1)

kt+1

+ Ωt+1
∂πt+1

∂kt+1

] [
A(1− α)kα

t

1 + πt

{(
1− τt
1 + πt

)
∂πt

∂τt
− πt

}]
.

The term in second square brackets represents the effect of a higher current tax on next

period’s capital stock. A necessary condition for this to be positive is that the tax-financed
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increase in abatement activity increases the survival probability for the current young by

enough to offset the negative income effect of the higher tax. The term in the first square

brackets represents the effect of a higher stock of capital next period on the welfare of the

next generation. That in turn depends in part on the effect of the higher capital stock

on the survival probability of next period’s young. Even if that is positive, the overall

effect on their welfare might not be because of the term Ωt+1 which could be negative at

low initial values of capital, for similar reasons as were identified in the case of Ωt: higher

survival probability raises the utility from given old-age consumption but lowers both

young-age and old-age consumption levels; thus if the initial level of old-age consumption

is low this contributes a negative effect. This discussion indicates that it will be difficult

to assign a sign to the inter-generational effect on current optimal taxation on an a priori

basis.

Since we have already derived using analytical methods a well-behaved tax policy function

without incorporating the inter-generational effect and our main aim is to verify the intu-

ition outlined above for how incorporating such effects might modify the policy function

we proceed by way of numerical examples which map the policy function at varying levels

of the steady state capital stock.

We start by defining the steady state version of the optimal tax equation[
Ω
∂π

∂τ
− 1 + απ

1− τ

]
− β

[
α(1 + 2π)

k
+Ω

∂π

∂τ

] [
A(1− α)kα

1 + π

{(
1− τ

1 + π

)
∂π

∂τ
− π

}]
≤ 0; (29)

(< 0 implies that τ = 0) where ∂π/∂τ is given by equation (25) and ∂π/∂k is given by

equation (28).

MATLAB was used to trace out the policy function. Taking an interval of values of steady

state capital, k, equation (28) was recursively solved for the optimal value of the steady

state abatement tax, τ at varying levels of the inter-generational discount factor, β. The

results are in Figure 3. Other parameter values were set as in Figure 2.

We can see that the qualitative properties of the policy function are as hypothesised:

regardless of the value of β, the optimal tax is zero at sufficiently low levels of k. As k

rises, an upward sloping and concave tax emerges. The main effect of higher β is to shift

the policy function upwards so that at any level of k the planner is more likely to undertake

active abatement and to set a higher tax if positive. This is line with conventional wisdom

regarding the effect of far-sighted environmental policy.

At the same time, in our model, the reaction of the capital stock to taxes can be non-

convex. We have seen that at any arbitrary tax, there can be multiple steady states and

that an increase in the abatement tax rate can have ambiguous effects on the steady state
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Figure 3: The policy function.

capital stock. It is the interaction of a fairly conventional state-contingent environmental

policy with the behaviour of the capital stock longevity that can introduce non-linearities

and change the dynamics.

4.3 Dynamics of the optimal tax:

A steady state with optimal taxation is characterised by two equations.

k =
π(k, τ)

1 + π(k, τ)
A · (1− τ)(1− α)kα; (30)

τ = h(k); (31)

where equation (30) represents the steady state reaction function of private agents and

equation (31) represents the steady state policy function of the social planner. We assume

that h(k) satisfies Proposition 3 for both a myopic and a long-lived social planner. A

solution to the above equations is represented by a pair (k∗, τ ∗).

The dynamics of the economy with optimal taxes are traced out by recursive application

of the tax policy function and the transition map for the capital stock. For any capital

kt > k̃, τt = h(kt). Then, next period’s capital stock follows:

kt+1 =
π(kt, τt)

1 + π(kt, τt)
A(1− τt)(1− α)kα

t = G(kt, τt);

and so on.
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This represents a first-order difference equation in kt for any arbitrary k0. Linearising

around a steady state, the local dynamics are determined by the sign and magnitude of

the expression
dkt+1

dkt
= G1(k

∗, τ ∗) + G2(k
∗, τ ∗)h′(k∗); (32)

where G1(k, τ) = G′(k), as given by equation (18) and G2(k, τ) is given by equation (19).

It is instructive to compare equation (32) with the case of exogenous abatement, in which

dkt+1

dkt
= G′(k∗).

In this case, the dynamics of the capital stock are driven by a non-time varying G(k)

function for a given τ . In the case of optimal abatement, the G function shifts (in (kt+1, kt)

space) each period as the tax varies along the optimal path. This generates the possibility

of additional dynamic complexity arising from a dynamic tax policy. To rule out any

further complexity in the exogenous-tax case, we assume that G1(k, τ) > 0 throughout

this section.

Define k∗ = g(τ), as the value of of k∗ which solves equation (30) for any admissible τ .

Then τ ∗ = h(k∗) solves the optimal tax at this steady state.

It is easy to show that

g′(τ) =
G2(k

∗, τ)
1− G1(k∗, τ))

.

Using the above, equation (32) can be expressed as:

dkt+1

dkt
= G1(k

∗, τ ∗) + g′(τ ∗)(1− G1(k
∗, τ ∗))h′(k∗); (33)

where the sign of g′(τ ∗) is the same as (resp. the opposite of) the sign of G2(k
∗, τ2), as

and when 1 − G′(k∗, τ ∗) > 0 (resp. < 0), as in the neoclassical steady state (resp. as in

the poverty trap).

We now establish the local dynamics, first at a neoclassical steady state and then at a

poverty trap.

4.3.1 Local dynamics around a neoclassical steady state

In this case, G1(k
∗, τ ∗) < 1, 1−G1(k

∗, τ ∗) > 0. Then g′(τ) > 0 (resp. < 0) as G2(k
∗, τ ∗) > 0

(resp. < 0). By suitable rearrangement of equation (33), it can be shown that

dkt+1

dkt

⎧⎪⎨
⎪⎩

> 1

∈ [0, 1]

< 0

⎫⎪⎬
⎪⎭ as g′(τ)h′(k)

⎧⎪⎪⎨
⎪⎪⎩

> 1

∈
[
− G1(k∗,τ∗)

1−G1(k∗,τ∗)
, 1
]

< − G1(k∗,τ∗)
1−G1(k∗,τ∗)

⎫⎪⎪⎬
⎪⎪⎭ .
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Figure 4: A stable neoclassical steady state

We can see that the local dynamics around a neoclassical steady state are no longer

necessarily convergent, as was the case in the exogenous tax economy. They will depend

on two factors: (i) whether g′(τ) is positive or negative, i.e. whether an increase in the

tax rate shifts the neoclassical steady state up or down; (ii) the slope of g(τ) relative to

the slopes of the other two main steady state relationships: h(k∗) and G1(k
∗, τ ∗) .

Whether g′(τ) is negative or positive, but its magnitude is not too large, the dynamic

path converges monotonically. When g′(τ) is positive and relatively large, the steady

state becomes a source. When g′(τ) is negative and relatively large, fluctuations can arise

near the steady state.

Figure 4 represents the dynamics of the stable case, with g′(τ) drawn as moderately

negative. The top panel of Figure 4 shows a family of transition maps for kt+1 as a

function of kt. Each map is underpinned by a specific value of the optimal tax, τt. The

lower panel depicts the functions g(τ) and h(k) in (τ − k) space. h(k) is always upward

sloping in this space while, in keeping with the assumed nature of this steady state, g(τ)

is downward sloping. Their intersection gives the combination of steady state capital and

steady state taxes, (τ ∗, k∗). This is the unique long-run steady state in the case depicted.

Starting at k0 < k, the latter defined in Proposition 2 as the minimum level of capital
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associated with active environmental policy, the optimal tax at t = 0 is τ0 = 0. The

steady state associated with this tax is the highest dashed transition map on the top

panel, which is labeled g(0). If the tax rate was held constant at this level, the capital

stock would evolve monotonically towards g(0) through iterative application of this map.

Thus at t = 0, next period’s capital, k1, will be given by the vertical projection to this

map from k0. But when the economy reaches k1, the optimal tax for that period need no

longer equal zero. Indeed, as drawn, the threshold level of capital is crossed and optimal

τ1 > 0, as given by the projection down from k1 to h(k). At τ1, the horizontal projection

to g(τ) gives the new steady state level of capital associated with a tax rate, τ1. This

means that the transition map in the upper panel shifts downwards so it intersects the 45o

line at g(τ1). The vertical projection from k1 to the new transition map gives k2 and so

on. The dynamics are monotonically convergent with both kt and τt rising in ever shorter

steps towards the steady state.

Figure 5 shows the case of explosive dynamics in the neighbourhood of a neoclassical

steady state. In this case, g′(τ) > 0, i.e. the steady state capital stock increases with

greater abatement taxes; in addition, g′(τ)h′(k) > 1 so that the combined effect of an

optimal tax that increases in the capital stock and the feedback from a higher tax to a

higher steady state capital stock is relatively strong. Graphically, (i) both g(τ) and h(k)

slope upwards in (τ − k) space and (ii) g(τ) cuts h(k) from below; hence, for any initial

k0 > k∗ (as shown in the diagram), g(τ0) > k0. And since each potential steady state

associated with a given (hypothetically constant) tax rate is locally stable, k1 > k0 so

that the economy moves away from k∗.

Figure 6 shows the case when g′(τ) < 0 and its magnitude is relatively large. As drawn,

it shows the dynamic path starting at k0 cycling between the pair (τ0, k0) and (τ1, k1)

forever. This happens because g′(τ) is large in magnitude, or since we are speaking in

relative terms, both (i) h(k) and (ii) G1(k
∗, τ ∗) are quite ‘flat’, i.e. a large change in kt

induces a small increase in τt while a small change in kt induces a large change in kt+1. As

a consequence of these features, given that the economy starts at k0 < k∗, (i) g(τ0) > k∗

and (ii) k1 > k∗ >> k0. But given τ1 = h(k1), (i) g(τ1) < k∗ and (ii) k2 < k∗ << k1.

Indeed, as drawn k2 = k0 so the cycle is locally stable although this is not necessarily

going to be the case. The point is that oscillations can arise if these two features are

present.

We summarise these results under the following Proposition, stated without further proof.

Proposition 5 Suppose there exists a neoclassical steady state (k∗, τ ∗) in an economy

with optimal taxation. Then, given G1(k
∗, τ ∗)) < 1 and (1− G1(k

∗, τ1)) > 0,
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Figure 5: A locally unstable neoclassical steady state.

Figure 6: Oscillations around a neoclassical steady state.
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(i) the steady state will be locally unstable if g′(τ ∗)h′(k∗) > 1;

(ii) there will be local fluctuations around the steady state if

g′(τ ∗)h′(k∗) < −{G1(k∗, τ ∗)/(1− G1(k
∗, τ ∗)} < 0;

(iii) the dynamics will be monotonically convergent in all other cases.

4.3.2 Local dynamics around a poverty trap:

In this case, the steady state map cuts the 45o line from below; therefore G1(k
∗, τ ∗) > 1

and 1 − G1(k
∗, τ ∗) < 0. Thus g′(τ) > 0 (resp. < 0) as G2(k

∗, τ ∗) < 0 (resp. > 0).

To remain consistent with the discussion following equation (19) in Section 3, we shall

exclude the case g′(τ) < 0 from further consideration. Thus, equation (33) can be written

more clearly as
dkt+1

dkt
= G1(k

∗, τ ∗)− g′(τ ∗)(G1(k∗, τ ∗)− 1)h′(k∗).

It can now be established by suitable rearrangement that20

dkt+1

dkt

⎧⎪⎨
⎪⎩

> 1

∈ [0, 1]

< 0

⎫⎪⎬
⎪⎭ as g′(τ)h′(k)

⎧⎪⎪⎨
⎪⎪⎩

< 1

∈
[
1, G1(k∗,τ∗)

G1(k∗,τ∗)−1

]
> G1(k∗,τ∗)

G1(k∗,τ∗)−1

⎫⎪⎪⎬
⎪⎪⎭ .

Whereas a poverty trap was monotonically a source in the case of exogenous taxes, it can

now be a sink. There can also be fluctuations around the poverty trap, depending on how

strong the interaction of optimal policy with private sector capital accumulation decisions

is.

Figure 7 shows the case of a monotonically stable poverty trap.21 In this case, h′(k)g′(τ) >
1, so that as k increases h(k) cuts g(τ) from above in the lower panel.

Starting at an initial capital, k0 < k∗ and tax rate τ0 < τ ∗, the transition map associated

with τ0 would result in a steady state g(τ0) which lies below k0. Because g(τ0) is (for

constant τ) unstable, this means that k1 > k0. Then τ1 > τ0 and g(τ1) lies above g(τ0)

but below k1. Thus k2 > k1, τ2 > τ1 and the economy is on a path that converges to

(τ ∗, k∗).

Intuitively Figure 7 depicts a case in which abatement taxes become optimal only at a

relatively high level of capital but are subsequently fairly sensitive to increases in capital.

20It is implicit in the above that for any variable x > 1, x/(x− 1) → 1 from above as x → ∞.
21The case in which the dynamics remain qualitatively similar to the exogenous-tax case is discussed

in a working paper version of this pape, [Goenka et. al., 2012.]
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Figure 7: A locally stable poverty trap

This results in h(k) cutting g(τ) from above. When the initial capital stock is below

the steady state, the optimal tax rate associated with that capital stock maps into an

associated (transitory) steady state which lies below the initial capital stock. This results

in next period’s capital stock being higher than the initial one and closer to the long-run

steady state.

Finally, the possibility of cycles around a poverty trap is illustrated in Figure 8. As drawn,

both the policy function and the transition map are steep. Since the transition map cuts

the 45o line from below this means that kt+1 is quite sensitive to changes in kt. The

slope of the policy function further implies that τt is sensitive to changes in kt. When

the economy starts at k0, the tax rate is τ0 and the dynamics follows g(τ0), along this

map, capital increases by a large amount to k1 > k∗. This causes the tax rate at t = 1 to

increase to τ1 causing a large shift in the transition map to g(τ1). Given k1 thenm there

is a large drop in capital to k2 < k∗. As drawn, the cycle is explosive; however this need

not be the case; the cycle could be stable or convergent.22

Proposition 6 Suppose there exists a poverty trap (k∗, τ ∗) in an economy with optimal

taxation. Then, given that G1(k
∗, τ ∗) > 1, G1(k

∗, τ ∗)/[G1(k∗, τ ∗)− 1] > 1,

22It is worth noting the difference with Palivos and Varvarigos [2010]; while they argue that environ-

mental taxation can be used to eliminate cycles associated with the impact of pollution on uncertain

lifetimes, our results show that second-best welfare-maximising environmental taxes can in themselves

be a source of oscillations.
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Figure 8: Cycles around a poverty trap.

(i) the steady state will be locally unstable if g′(τ ∗)h′(k∗) < 1;

(ii) there will be local fluctuations around the steady state if

g′(τ ∗)h′(k∗) > G1(k
∗, τ ∗)/[G1(k∗, τ ∗)− 1] > 1;

(iii) the dynamics will be monotonically convergent in all other cases.

4.3.3 Existence, uniqueness and stability of steady states:

This section makes use of the local analysis carried out above. Figure 9 depicts an

economy in which multiple steady states arise at any given tax rate. Thus, the locus

g(τ) is D-shaped (note that the axes have been rotated by 90o degrees anti-clockwise

in relation to Figures 4-8). The locus h(k) is upward sloping and concave throughout.

Because of the shape of g(τ), the existence of a steady state with optimal taxes is not

guaranteed. We have drawn three different versions of the h(k) locus, which for a given

underlying economy, could correspond to three different values of the intergenerational

discount factor.

With h1(k) there is no interior steady state associated with optimal tax policy, while with

h2(k) there is zero taxation at both the low and high steady states. It is only with h(k)

31



Figure 9: Non-existence and multiplicity of steady states with optimal policy.

that there is positive taxation at both steady states: the lower steady state, S1 has lower

capital and lower taxation and is locally unstable. The higher steady state, S2 is stable

but as shown in Section 4.3.1, local cycles are possible around this steady state. Both

possibilities are illustrated in Figure 9.

In Figure 10, we show a case where h(k) cuts the k-axis at a point that lies inside the D.

It then cuts g(τ) at three interior points, S1, S2 and S3. Both S1 and S2 are poverty traps

and S3 is a neoclassical steady state. S1 and S3 are both stable, although both can give

rise to cycles (the latter are shown only around S1). Thus, while poverty traps are always

unstable under exogenous taxation, optimal policy can render them locally stable.

Finally, Figure 11 presents another intriguing consequence of optimal policy. This figure

illustrates a parametrized example computued by MATLAB using the same parameter

values as the ones that generated Figure 2. In Figure 11 only the neoclassical steady state

is shown. Recall that in Figure 2, we established numerically that the response of the

capital stock to the tax rate in a neoclassical steady state can be upward sloping. Thus,

the locus g(τ) is upward sloping reflecting that possibility. While Figure 2 was drawn

for arbitrary taxes and did not depend on the intergenerational preferences of a social

planner, Figure 11 illustrates the optimal tax function for β = 0.9.
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Figure 10: Multiple poverty traps.

We have established in earlier sections that an optimal second-best tax might have a

positive intercept on the capital axis. Figure 11 shows that when the intercept of the tax

policy function is sufficiently high, as happens in our numerical example, then there can

be multiple intersections between the policy function and the reaction function, leading

to two neoclassical-type steady states. Thus we have a low steady state with τ1 = 0.065,

kh1 = 0.124 and a high steady state with τ2 = 0.185, kh2 = 0.1422. We label the low

capital steady state as kh1 to avoid confusion with a poverty trap which is labelled k�.

Two neoclassical steady states arise in this example as the g(τ) function which maps the

tax rate into steady state levels of the capital stock is upward sloping, in line with the

case depicted in Figure 2. The tax policy function h(k) has the expected shape: zero for

low levels of capital, and then increasing and concave.

In this figure, the low-capital neoclassical steady state is unstable while the higher-capital

steady state is stable. What this suggests is that an economy that starts at a level of

capital below S1 is caught in an ‘environmental trap’ which results in successively lower

levels of environmental controls, resulting in successively lower levels of capital.

33



Figure 11: A locally unstable neoclassical steady state, β = 0.9.

5 Conclusions

This paper has shown that the combined effect of income and pollution on life expectancy

can lead to multiple interior steady states, with an unstable poverty trap and a stable,

neoclassical steady state. We examined the comparative static effects of exogenous tax

abatement policy and showed that this will widen the basin of the poverty trap sand can

stimulate higher capital accumulation at the neoclassical steady state.

The main contribution of the paper has been the characterisation of the optimal environ-

mental taxation where a forward-looking planner sets taxes taking as given the optimal

saving decisions of each generation. We show that the tax is non-homogeneous and mono-

tonically increasing in the capital stock. From a policy point of view, this suggests that

economies that are close to or just emerging from a poverty trap might impose zero or

low levels of environmental protection but eventually this will rise along the growth path.

More importantly, we have shown that optimal policy might itself contribute to complex

dynamics in several ways: first, a steady state with optimal taxes might not exist when in

the underlying economy with exogenous policy, one or more interior steady states existed;

second, by inducing multiple steady states under conditions where a unique steady state

would have existed with exogenous policy; third, by stabilising poverty traps which would
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be unstable under exogenous policy; fourth, by inducing oscillations and cycles around

steady states which would otherwise be locally stable.

With respect to the last finding, we offer a word of caution. Although there is evidence that

short term fluctuations in air quality can lead to fluctuations in mortality rates (see Evans

and Smith [2005], Huang et al. [2012]), it is not clear that these phenomena are in turn

part of a general business cycle or driven by seasonality. The main lesson that we would

like to emphasise through these findings is that in cases such as the one we have studied,

where the impact of state variables on economic outcomes is not uniformly monotonic,

optimal policy itself can contribute to economic fluctuations and multiplicity of steady

states, rather than reduce them. Thus, models that impose steady state conditions to

derive optimal policy can be misleading about both the transitional dynamics and the

asymptotic outcomes.
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APPENDICES

A1: Derivation of ∂2π/∂τ∂k:

Recall that
∂π

∂τ
=

πAψγAkαδzδ−1

(1 + zδ)2

Note that we can also write this as

∂π

∂τ
=

πψγAkαδzδ−1

1 + zδ

Taking the derivative of the above with respect to k (after some straightforward rear-

rangement):

∂2π

∂τ∂k
=

α

k

∂π

∂τ
+

1

πA

∂π

∂τ

∂πA

∂k
+

1

z(1 + zδ)

∂π

∂τ
[(δ − 1)− (δ + 1)zδ]

∂z

∂k

where
∂πA

∂k
=

α

k

ϑ(1− π)yϑ

(1 + yϑ)2
=

α

k

ϑ(1− π)yϑ

(1 + yϑ)

π(1 + zδ)

(π + yϑ))

and
∂z

∂k
=

αγ(1− ψτ)Akα

k
=

αz

k
The right hand side of the main derivative can be written as

∂π

∂τ

[
α

k
+

(1 + zδ)

πA

απ

k

ϑ(1− π)yϑ

(1 + yϑ)(π + yϑ)
+

α

k

z − φz′

z(1 + zδ)
[(δ − 1)− (δ + 1)zδ]

]

Finally, expanding the term in square brackets involving zδ and noting the definition of

π, we get

∂π

∂τ

[
α

k
+

1

π

{
απ

k

(
ϑ(1− π)yϑ

(1 + yϑ)(π + yϑ)
− zδzδ−1

(1 + zδ)

)
+

απδ

k

z

(1 + zδ)z
− απ

k

z

z

}]
;

from which, noting the definition of ∂π/∂k, it follows that

∂2π

∂τ∂k
=

∂π

∂τ

1

k

[
α +

k

π

∂π

∂k
+

αδz

(1 + zδ)z
− α

]
;

leading to the desired result.

A2: An example of π(k):
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Assuming the functional form:

π = πAπB

where

πA =
π + yϑ

1 + yϑ

then it can be shown that πA
y > 0 if π < 1 and that πA

yy ≤ 0 if and only if y ≤ [(ϑ −
1)/(1 + ϑ)]1/ϑ so that for any ϑ > 1, πA(y) is S-shaped upwards.

If similarly,

πB =
1

1 + zδ

then it can be shown that πB < 0 and that πB
zz ≤ 0 if and only if z ≤ [(δ − 1)/(1 + δ)]1/δ

so that for any δ > 1, πB(z) is reverse S-shaped downwards.

Thus, the above function satisfies the sufficient conditions for multiple steady states, and

after imposing the steady state relationship between y, z and k and totally differentiating,

that a sufficient condition for π′(k) to satisfy the conditions of Lemma 1 as k approaches

zero is

min{ϑ, δ} >
1

α
> 1.

This ensures limk→0 π
′(k) = 0, which is stronger than what is needed for Lemma 1.

If we consider a special case where π = 0, then π′(0) = 0 so long as ϑ > 1/α. For this

case, it can be shown that a weaker condition

ϑ >
1− α

α

suffices to generate G′(0) = 0.

This is because the combination of the terms

G′(k) =
[

Γkα

1 + π(k)

] [
α
π(k)

k
− π′(k)

1 + π(k)

]
.

can converge to zero even if each term inside the square brackets does not.

Another special case is to assume πA = π̄ so that growth affects survival probability only

through pollution. This case can also lead to multiple steady states if δ > 1/α and can

also be used for studying optimal tax policy, but because it implies a counter-factually

monotonic and negative impact of growth on survival, we do not pursue it.
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